Sampling Methods

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. wnarifin@usm.my

Wan Nor Arifin, 2014. Sampling Techniques by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Outlines

- Sampling
 - Probability Sampling
 - Non-probability Sampling

Learning Objectives

- Understand concept of sampling
- Understand and able to apply methods of probability sampling
- Able to differentiate between probability and non-probability sampling

Sampling

- What is a sample?
- What is sampling?

Sampling

• Sampling: A process of selecting a number of subjects from a population of interest, so as to make conclusion about the whole population (Everitt and Skrondal, 2010).

Sampling

- Sub-division (Trochim, 2006):
 - Probability
 - Non-probability

Probability Sampling

- *Random* selection method.
- Every subject has a probability to be selected (*NOT* necessarily equal probability).
- Probability of selection for each sampling unit is known and > 0.
- It is possible to know how representative a sample of its population.

Probability Sampling

- 4 sampling methods:
 - 1. Simple random.
 - 2. Stratified random.
 - 3. Systematic.
 - 4. Cluster.

1. Simple Random

- A number of distinct subjects are selected randomly from the population in a way that each sampling unit has *equal chance* to be selected.
- Example: 30 patients are randomly selected selected from a list of 1000 patients available to the clinician.

1. Simple Random

Population N=1000

1

23

•

1000

Sample n=30

7, 17, 18, 48, 71, 109, 141, 165, 214, 219, 277, 279, 288, 440, 475, 483, 576, 660, 735, 763, 764, 780, 863, 883, 888, 914, 917, 927, 993, 996

30 random numbers between 1 - 1000 generated using computer e.g. http://www.randomizer.org/

27/11/2014

MSc (Medstats) 201

2. Stratified Random

- Subdivision of a population into strata (e.g. gender, race).
- Simple random sampling done within each stratum.
- Ensures major and minority groups are addressed as sampling is done proportionate to strata size in the population.
- Example: For a population consisting of 40% male and 60% female, sampling within each group gives better representation of the population.

2. Stratified Random

3. Systematic

- Sampling of subjects at a predetermined *sampling interval* (*k*), with a random starting number (*j*) in the interval.
- Practical when population list is impossible to obtain (e.g. clinic attendance) but population size (*N*) is estimable (Levy and Lemeshow, 1999).
- Given required sample size (*n*):

k = N/n

• Starting with *j* subject, followed by every *k*th subject (Trochim, 2006).

3. Systematic

• Example: It is estimated that 100 patients come to an oncology clinic per month. To sample 20 patients, more practical to sample starting with a random *j* patient, followed by every *k*th patient.

3. Systematic

1. Interval, *k* = *N*/*n* = 100/20 = 5

2. Starting point = Random number between 1 – 5, e.g. 3

3. Then every interval of 5

Population N=100

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100

Sample n=20

3, 8, 13, 18, 23, 28, 33, 38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98

4. Cluster

- Cluster = Group of people
- Sampling Unit = Cluster e.g. House, Class, Ward etc. → Sampling done on clusters.
- Have to inflate sample size, *n*' to adjust for cluster effect (Naing, 2011)

$$n' = [1 + (cluster size - 1)r] \times n$$

• *r* is correlation between subjects in a cluster \rightarrow unknown, can assume *r* = 0.5.

4. Cluster

Population N=300

1, 2, 3, ..., 300

1.50 houses in area

2. On average, 6 persons/house = cluster size

Sample n=30

n' = [1+(6–1)0.5] x 30 = 105 n of house to sample = 105/6 = 17.5 ≈ 18 houses

House, N=50

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50

11100 (1110001010) 201 1/2010

House, n=18

2, 7, 11, 12, 15, 18, 20, 22, 25, 26, 30, 31, 32, 33, 36, 38, 43, 44

10

Multistage sampling?

• Any combination of previous 4 sampling methods.

Activity

 Perform all 4 types of probability sampling methods on this population → *Sampling Methods.xls*

Non-probability Sampling

- Random selection method not used.
- Selection based on preset criteria set by researcher.
- Could be biased, not representative of population.

Non-probability Sampling

- Among the methods:
 - Convenient/Accidental/Haphazard:
 - Choose those easily available/sampled
 - e.g. my friends, friends of my friends, relatives, room mates, etc.
 - Purposive:
 - Choose those fulfilling criteria.
 - e.g. only those who come to clinic on Monday, handsome/cute persons only, etc.

Sampling using SPSS

• Read my article, Arifin (2012).

References

- 1.Arifin, W. N. (2012). Random sampling and allocation using SPSS. *Education in Medicine Journal* 4(1), 129-143.
- 2.Everitt, B., Skrondal, A. (2010). *The Cambridge dictionary of statistics*. 4th ed. New York: Cambridge University Press.
- 3.Levy, P. S., Lemeshow, S. (1999). *Sampling of populations: Methods and applications*. 3rd ed. New York: John Wiley & Sons.
- 4.Naing, N. N. (2011). A practical guide on determination of sample size in health sciences research. 5th ed. Kelantan, Malaysia: Pustaka Aman Press Sdn. Bhd.
- 5.Trochim, W. M. K. (2006). Research methods knowledge base. Retrieved March 27, 2012, from http://www.socialresearchmethods.net.
 27/11/2014 MSc (Medstats) 2014/2015