Sampling Methods

Unit of Biostatistics and Research Methodology,
Universiti Sains Malaysia.
wnarifin@usm.my

Outlines

- Sampling
- Probability Sampling
- Non-probability Sampling

Learning Objectives

- Understand concept of sampling
- Understand and able to apply methods of probability sampling
- Able to differentiate between probability and non-probability sampling

Sampling

-What is a sample?

- What is sampling?

Sampling

- Sampling: A process of selecting a number of subjects from a population of interest, so as to make conclusion about the whole population (Everitt and Skrondal, 2010).

Sampling

Population

Sampling

Sample

Sampling

- Sub-division (Trochim, 2006):
- Probability
- Non-probability

Probability Sampling

- Random selection method.
- Every subject has a probability to be selected (NOT necessarily equal probability).
- Probability of selection for each sampling unit is known and >0.
- It is possible to know how representative a sample of its population.

Probability Sampling

- 4 sampling methods:

1. Simple random.
2. Stratified random.
3. Systematic.
4. Cluster.

1. Simple Random

- A number of distinct subjects are selected randomly from the population in a way that each sampling unit has equal chance to be selected.
- Example: 30 patients are randomly selected selected from a list of 1000 patients available to the clinician.

1. Simple Random

2. Stratified Random

- Subdivision of a population into strata (e.g. gender, race).
- Simple random sampling done within each stratum.
- Ensures major and minority groups are addressed as sampling is done proportionate to strata size in the population.
- Example: For a population consisting of 40% male and 60% female, sampling within each group gives better representation of the population.

2. Stratified Random

3. Systematic

- Sampling of subjects at a predetermined sampling interval (k), with a random starting number (j) in the interval.
- Practical when population list is impossible to obtain (e.g. clinic attendance) but population size (N) is estimable (Levy and Lemeshow, 1999).
- Given required sample size (n):

$$
k=N / n
$$

- Starting with j subject, followed by every k th subject (Trochim, 2006).

3. Systematic

- Example: It is estimated that 100 patients come to an oncology clinic per month. To sample 20 patients, more practical to sample starting with a random j patient, followed by every k th patient.

3. Systematic

	Population $\mathrm{N}=100$	
1. Interval, $k=N / n=$$100 / 20=5$ $100 / 20=5$$1,2, \underline{3}, 4,5,6,7, \underline{8}, 9,10$		
	$12, \underline{13}, 14,15,16,17, \underline{18}, 19,20$,	Sample n=20
2. Starting point $=$ Random number between 1 - 5, e.g. 3	21, 22, 23, 24, 25, 26, 27, 28, 29,	
	$30,31,32,33,34,35,36,37,38$	3, 8, 13, 18, 23, 28, 33,
	$\underline{48}, 49,50,51,52, \underline{53}, 54,55,56 \text {, }$	$38,43,48,53,58,63,68$
3. Then every interval of 5	$57, \underline{58}, 59,60,61,62, \underline{63}, 64,65$,	
	$\begin{aligned} & 66,67, \underline{68}, 69,70,71,72, \underline{73}, 74, \\ & 75,76,77, \underline{78}, 79,80,81,82, \underline{83}, \end{aligned}$	
	$84,85,86,87,88,89,90,91,92$,	
	93, 94, 95, 96, 97, 98, 99, 100	

4. Cluster

- Cluster $=$ Group of people
- Sampling Unit = Cluster e.g. House, Class, Ward etc. \rightarrow Sampling done on clusters.
- Have to inflate sample size, n^{\prime} to adjust for cluster effect (Naing, 2011)

$$
n^{\prime}=[1+(\text { cluster size }-1) r] \times n
$$

- r is correlation between subjects in a cluster \rightarrow unknown, can assume $r=0.5$.

4. Cluster

Population N=300
$1,2,3, \ldots, 300$

1. 50 houses in area
2. On average, 6 persons/house = cluster size

Sample n=30

$$
\begin{gathered}
n^{\prime}= \\
{[1+(6-1) 0.5] \times 30} \\
=105
\end{gathered}
$$

n of house to sample $=$ 105/6 = 17.5 ~ 18 houses

House, N=50

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, $12,13,14,15,16,17,18,19$,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, $44,45,46,47,48,49,50$

House, n=18

2, 7, 11, 12, 15, 18, $20,22,25,26,30$, 31, 32, 33, 36, 38,

43, 44

Multistage sampling?

- Any combination of previous 4 sampling methods.

Activity

- Perform all 4 types of probability sampling methods on this population \rightarrow Sampling Methods.xls

Non-probability Sampling

- Random selection method not used.
- Selection based on preset criteria set by researcher.
- Could be biased, not representative of population.

Non-probability Sampling

- Among the methods:
- Convenient/ Accidental/Haphazard:
- Choose those easily available/sampled
- e.g. my friends, friends of my friends, relatives, room mates, etc.
- Purposive:
- Choose those fulfilling criteria.
- e.g. only those who come to clinic on Monday, handsome/cute persons only, etc.

Sampling using SPSS

- Read my article, Arifin (2012).

References

1.Arifin, W. N. (2012). Random sampling and allocation using SPSS. Education in Medicine Journal 4(1), 129-143.
2.Everitt, B., Skrondal, A. (2010). The Cambridge dictionary of statistics. 4th ed. New York: Cambridge University Press.
3.Levy, P. S., Lemeshow, S. (1999). Sampling of populations: Methods and applications. 3rd ed. New York: John Wiley \& Sons.
4.Naing, N. N. (2011). A practical guide on determination of sample size in health sciences research. 5th ed. Kelantan, Malaysia: Pustaka Aman Press Sdn. Bhd.
5.Trochim, W. M. K. (2006). Research methods knowledge base. Retrieved March 27, 2012, from http:/ / www.socialresearchmethods.net.

